Analysis of Tracer Migration in a Diverging Radial Flow Field

نویسندگان

  • J. C. Seaman
  • F. Majs
  • P. M. Bertsch
چکیده

Hydrodynamic dispersion is an important factor controlling contaminant migration in the subsurface environment. However, few comprehensive data sets exist for critically evaluating the impact of travel distance and site heterogeneity on solute dispersion. Therefore, a series of field-scale experiments using tritiated water (H2O), and bromide (Br) as tracers was conducted on the U.S. Department of Energy's Savannah River Site. For each experiment, tracer-free groundwater was injected at a fixed rate of 56.7 L min to establish a forced radial gradient prior to the introduction of a tracer pulse. After the tracer pulse, the forced gradient was maintained throughout the experiment using non-labeled groundwater. Tracer migration was monitored using six sampling wells radially spaced at approximate distances of 2.0-, 3.0-, and 4.5-m from the injection well. Each sampling well was further divided into three discrete sampling depths that were pumped continuously throughout the course of the experiments. Longitudinal dispersivity (αL) and travel times for H2O were estimated by fitting the field data to analytical approximations of the advection-dispersion equation (ADE) for uniform and radial flow. Dispersivity varied greatly between wells located at similar transport distances and between zones within a given well. The radial flow equation described H2O breakthrough better than the uniform flow solution, yielding lower αL values while accounting for breakthrough tailing inherent to radial flow conditions. Temporal moment analysis confirmed the retardation of Br, generally considered to travel in a conservative manner, despite data truncation due to extensive tailing that biased retardation estimates when compared to H2O. Despite retardation and incomplete mass recovery, both ADE models were able to reasonably describe the Br data without accounting for sorption reactions, indicating that chemical interactions with the geologic matrix may be misinterpreted in terms of a physical transport process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Longitudinal Dispersion and Tracer Migration in a Radial Flow Field

Hydrodynamic dispersion is an important factor controlling contaminant migration in the subsurface environment. However, few comprehensive data sets exist for evaluating the impact of travel distance and site heterogeneity on solute dispersion under non-uniform flow conditions. In addition, anionic tracers are often used to estimate physical transport parameters based on an erroneous assumption...

متن کامل

Heat Transfer Analysis of Nanofluid Flow with Porous Medium through Jeffery Hamel Diverging/Converging Channel

In this paper, flow and heat transfer of nanofluid through a converging or diverging channel with porous medium is investigated. The fluid constantly flows under the effect of magnetic field through the channel. The diverging/converging fluid motion is modeled using the momentum and energy equations. The influence of some parameters such as opening channel angle, Reynolds number and Darcy’s num...

متن کامل

Investigation of flow and heat transfer of nanofluid in a diverging sinusoidal channel

Using of nanofluids and ducts with corrugated walls are both supposed to enhance heat transfer, by increasing the heat transfer fluid conductivity and the heat transfer area respectively. Use of a diverging duct with a jet at inlet section may further increase heat transfer by creating recirculation zones inside the duct. In this work two-dimensional incompressible laminar flow of a nanofluid e...

متن کامل

The effect of inclined radial flow in proton exchange membrane fuel cells performance

Computational fluid dynamics analysis was employed to investigate the radial flow field patterns of proton exchange membrane fuel cells (PEMFC) with different channel geometries at high operating current densities. 3D, non-isothermal was used with single straight channel geometry. Our study showed that new generation of fuel cells with circle stack with the same active area and inlet area gave ...

متن کامل

Investigation of flow and heat transfer of nanofluid in a diverging sinusoidal channel

Using of nanofluids and ducts with corrugated walls are both supposed to enhance heat transfer, by increasing the heat transfer fluid conductivity and the heat transfer area respectively. Use of a diverging duct with a jet at inlet section may further increase heat transfer by creating recirculation zones inside the duct. In this work two-dimensional incompressible laminar flow of a nanofluid e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007